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ABSTRACT 
All human behavior representations (HBRs) simulate some aspects of people, either 
individually or as groups.  HBRs differ from simulations of other complex phenomena by 
their knowledge bases, effectively sophisticated computer programs written in a 
knowledge representation language.  As a discipline in simulation technology, HBR 
validation is still relatively immature with no theory, few tools and techniques and 
considerable but poorly documented experience.  Two sources of information establish a 
firm foundation for the advancement of HBR validation technology, a broad experiential 
base and a more mature related field, knowledge-based system (KBS) verification and 
validation.  HBR validators have learned many lessons from existing and future systems 
that deal with requirements, the subject matter expert-software engineer process, 
association of the HBR with the synthetic natural environment, and documentation.  
These lessons supply a rich source of guidance for future HBR validation activities.  KBS 



 2

verification and validation is considerably more mature with a very large literature base 
to support it.  HBRs, as a form of KBS because of their knowledge bases, can benefit 
significantly from this technology base.  With these resources and increasing realization 
of its importance across the broader simulation world, HBR validation is poised to mature 
very rapidly. 

INTRODUCTION 
All human behavior representations (HBRs) simulate some features of people.  Many 
simulations represent elements of human behavior, ranging from the characteristics of 
large groups to the detailed behaviors of individuals and teams.  Any situation in which 
the presence of people can affect its outcome requires representing some aspects of 
human behavior. 

Despite HBRs’ ubiquity, people have practiced validating them only sporadically and that 
practice remains one of the more poorly understood areas of validation technology.  
Compared with other simulation-related disciplines, the existing technical literature base 
is relatively small but not nonexistent.  One can easily meaningfully group the bulk of 
this literature into requirements [1-8], conceptual modeling [9-11], tools [10-15], and 
experience [16-20].  The majority of this literature was published in a conference 
specializing in HBRs.  Most of the literature associated with this conference series deals 
with developmental issues.  Perhaps not surprisingly, considerably more experience 
exists in HBR validation than this meager literature base suggests but little of this 
experience has been documented in the technical literature. 

A much more mature field, validation of knowledge-based systems (KBS), encompasses 
technology that applies to those HBRs that represent the cognitive aspects of people [21].  
These simulations are becoming more common and their capabilities are rapidly 
becoming more sophisticated as computing technology advances and users seek more 
predictive representations of the processes manifested by human organizations (e.g., 
command and control systems).  As a result, the maturity of KBS validation should 
become more important to HBR validation since they share many important properties. 

The survey of HBR validation in this paper begins with an overview of the basic concepts 
inherent to the field.  It describes the nature and peculiarities of HBRs that complicate 
their validation.  It also briefly considers the impact of these peculiarities upon validation 
activities.  The next section captures the invaluable experience gained from validating the 
HBRs used in large scale military simulations.  While anecdotal, this information forms 
an important foundation for any future evolution of HBR validation technology that no 
one should ignore.  The last section surveys the breadth of KBS verification and 
validation technology.  KBS validation defines the future of HBR validation since it is 
vastly more mature and deals with one of the more unique but difficult areas of HBRs, 
the knowledge base. 

BASIC CONCEPTS 
This section briefly covers the nature of HBRs and their validation.  It considers the 
problems that make HBR validation appear different from regular simulation validation.  
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It concludes by showing how many of the mechanisms of validation (e.g., fidelity, 
referents, conceptual models) apply to HBRs. 

General Issues 
All HBRs simulate some aspects of people and nearly all complex simulations represent 
the behavior of people at one level or another, implicitly if not explicitly.  As simulation 
technology and application advance, more and more simulation results will depend upon 
the output of HBRs.  This trend makes understanding HBR validation imperative. 

HBRs are unique among other complex simulations.  At first blush, they appear 
distinguished from the other parts of a simulation by their 

• Very high inherent complexity,   

• Numerous nonlinear relationships all interacting chaotically over many different 
orders of magnitude, and 

• Complex coupling with other parts of a simulation system. 

However, simulated environment and nuclear effects models both face similar daunting 
problems.  The real distinction of HBRs comes from their knowledge bases.  An HBR’s 
knowledge base really constitutes a computer program, in many cases a very complicated 
one, that a behavior engine executes to create human-like behavior.  An HBR’s 
knowledge representation defines its programming language.  Any simulation system that 
represents different humans contains many of these computer programs within the 
simulation system’s computer program.  In addition to the non-human representations, 
developers must thus debug two sets of computer programs: the behavior engine (usually 
written in a language like C) and the knowledge base for each individual represented 
(written in the knowledge representation language).  These facts added to the inherent 
complexity of HBRs easily make them the most complex components of a simulation 
system, even when compared to simulated environments. 
People hold fast to many myths about validating HBRs.  Table 1 summarizes a few of the 
most prevalent myths and identifies their underlying fallacies. 

Table 1.  Common Myths about HBR Validation. 
Myth Explanation 

Users are good sources of HBR 
requirements. 

Users may understand the people in the situations they 
want simulated but they do not usually understand what 
about that human behavior their simulation can ignore.  
Thus, even if they appreciate the need for an HBR in 
their simulation (not a common occurrence), they tend 
to state that need in unrealistic terms.   

A good referent for an HBR is 
a human doing the same job. 

Identifying the corresponding human as a referent for 
its simulation may seem like a good idea but everything 
about that human is probably not well known.  Human 
referents also tempt one to expect its abstraction to 
perform exactly like that human rather than its 
abstraction. 
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Table 1.  Common Myths about HBR Validation (continued). 
Myth Explanation 

A valid HBR is as realistic 
(i.e., error = 0 in all property 
dimensions for all 
dependencies) as possible. 

Again, HBRs are necessarily abstractions of real 
humans.  We do not understand human nature well 
enough to accurately model all of human behavior.  
Like other simulations, HBRs should only represent 
what the purpose requires.  Even if technically possible, 
a perfectly accurate HBR would be prohibitively 
expensive to develop and use 

A good HBR is stochastic just 
like humans. 

Human behavior appears stochastic due to its high 
complexity and chaotic nature.  Some aspects of human 
behavior lend themselves to stochastic representation 
but treating all of human behavior as random ignores 
the goal-directed nature inherent to all humans, a key 
property. 

A good HBR is logical just like 
humans. 

Humans seldom behave logically.  They can, however, 
explain their behavior logically but that explanation 
rarely agrees with the real phenomena underlying their 
behavior. 

“Fair Fight” is a clear and 
testable criterion for HBR 
validity. 

The success of the fair fight criterion depends entirely 
upon the observer and, thus, cannot be objective.  This 
will lead to irreconcilable differences between 
observers about whether the HBR actually met the 
criterion.  Good validation criteria are both observable 
and observer-independent. 

The experts will recognize 
invalid HBR behavior when 
they see it. 

Experts may recognize some invalid behavior when 
they see it but the complex nature of human behavior 
will lead to many false positives.  Experts have often 
declared quirky HBR behavior as distinctly “human” 
when it actually resulted from implementation errors. 

Validating HBRs is too hard so 
why do it or even try to 
understand it. 

This defeatist perspective only leads to accepting 
poorly performing HBRs.  Like any validation task, a 
reasonably simple discipline can produce acceptable 
and cost effective results.  Good understanding of HBR 
validity can even simplify the difficulty of abstracting 
the parts of human behavior necessary to achieve a 
purpose thereby reducing the developmental costs and 
risks. 

All of these beliefs are wrong and only hamper the practical use and advance of HBR 
validation. 

Validating HBRs does face several challenging problems: 

• HBRs tend to interact with complex environments. 

• HBRs operate within very large behavioral hyper-spaces. 

• HBRs inherently involve nonlinear behavior. 
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• HBRs often use oblique model representations (e.g., neural networks). 

• HBRs couple effects over many orders of magnitude (a property shared with 
complex environment simulations). 

Advancing technology will only aggravate these problems by enabling realistic complex 
HBR execution.  But, these challenges are not insurmountable.  They simply supply the 
grist for future research efforts. 

Description of HBR Nature 
As mentioned above, all HBRs model the behavior of people at some level of abstraction.  
So, HBRs can model any combination of the many different facets of human behavior 
including 

• Ability to reason (e.g., knowledge based systems) 

• Ability to change the environment (e.g., operating equipment) 

• Responds to comfort and discomfort (e.g., environmental safety) 

• Susceptibility to injury and illness (e.g., injury models) 

• Emotional responses (e.g., affective models) 

• Ability to communicate with other humans 

• Abilities to sense the environment (e.g., vision models) 

• Physical capabilities and limitations (e.g., MANPRINT) 

The terms computer generated forces (CGF), semi-automated forces (SAF and SAFOR), 
synthetic forces, automated forces (AFOR) and command forces (CFOR) all refer to 
different forms of HBRs. 

Figure 1, the HBR canonical model, depicts the basic components of a simulation of the 
neurologically-related human behavior, considered by many as generating the most 
interesting parts of human behavior [21].  In this model, the knowledge base consists of 
the executable dependencies needed to create the internal state representation from 
sensory input and to respond to that state.  The knowledge base also includes the decision 
functions that determine when and which of those dependencies should be executed to 
achieve goals at any particular time or combination of stimuli.  The behavior engine 
chooses the dependencies from the knowledge base appropriate to the current state and 
executes those dependencies to modify the internal state representation or to generate the 
actions to achieve the HBR’s goals.  The state representation depicts the HBR’s dynamic 
assessment of both the internal and external world state including all goals. 
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Figure 1.  Canonical Model of Human Behavior. 

The partitioning in this model creates the flexibility needed to represent the behavior of 
different individuals performing in different roles without requiring the building of 
completely new execution infrastructures each time. 

All behavior engines perform essentially the same functions in one form or another.  
These include 

• Accepting input about the state of the surrounding simulated world and using that 
information to update the HBR’s internal state representation 

• Evaluating the decision functions in the HBR’s knowledge base, in the context of 
the internal state representation changes, to identify the executable dependencies 
relevant to the current situation and goals 

• Executing the appropriate dependencies to change the internal state representation 
and generate the actions needed to achieve the HBR’s goals. 

In other words, in the context of this model, the only things an HBR can do to manifest 
its behavior are change the contents of its internal state representation, knowledge base 
and output.  Behavior engines can serve other roles in addition to these essential ones.  
This discussion will address these in later paragraphs. 

One can partition behavior engines into the few components illustrated in Figure 2. 
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Figure 2.  HBR Behavior Engine Partitioning. 

In this partitioning, sensor models couple the HBR to the information available from the 
simulated world.  They represent input modalities and bandwidths.  Action models couple 
the HBR brain to the simulated world through the body’s effectors (i.e., muscles).  They 
represent the actions taken to change the simulated world state to achieve the HBR’s 
goals.  The behavior engine represents the cognitive processes through its interactions 
with the knowledge base and state representation.  The behavior moderator models 
modulate the cognitive processes.  Behavior moderator models represent the effects of 
non-cognitive processes upon the cognitive processes. 

An HBR’s knowledge base and its state representation share the same information 
partitioning illustrated in Figure 3. 

 
Figure 3.  HBR Knowledge Base and State Representation Information Partitioning. 

The arrows going from the internal state to the knowledge base represent independent 
property flows and those going from the knowledge base to the state representation are 
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the dependent property flows from the executable dependencies. 

Finally, the behavior moderators modulate cognitive functions into realistic affective 
human behavior [22].  A behavior moderator is a condition that affects human behavior 
in ways other than those affected by the cognitive elements.  Figure 4 shows a taxonomy 
of human behavior moderators. 

 
Figure 4.  Taxonomy of Human Behavior Moderators. 

Few consistent models exist that describe how the behavior moderator conditions actually 
change brain function and, in turn, human behavior.  However, the community is actively 
pursuing this area of research and moderator representations do exist that suit the 
demands of some applications. 

HBR Validation 
In general, validation answers the question “How closely must the simulation resemble 
its simuland to achieve a purpose?”  In effect, this question assesses the fitness of a 
simulation, whether of humans or some other phenomena, for a particular purpose.  The 
reliability of this assessment and the answers it supplies depend upon the quality of three 
types of information: 

• Validation criteria, 

• Referent,  

• Simulation capabilities. 

Validation criteria come from the users’ requirements.  Several authors have examined 
the issues associated with HBR requirements and validation criteria [1-8, 20].  The 
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earliest of these explored the criteria for validating purely cognitive behavior [7], fewer 
than ten years ago.  Since then authors have looked at the requirements for such specific 
applications as pilot training [1, 3], air defense [5] and sensor development [2].  Two 
authors [3, 4] have built their understanding of HBR requirements upon the foundations 
laid by Chandrasekaran and Josephson in their description of HBR fidelity through goal 
analysis [6].  Two authors have surveyed and categorized the requirements for HBRs in 
military simulations with various applications [4, 8].  These surveys have shown that 
requirements writers do not clearly understand the issues associated with specifying 
practical HBRs very well.  Subject matter experts (SMEs) stand as one of the most 
important sources of requirements [8, 20] and several techniques from the broader area of 
knowledge acquisition apply well in eliciting this information from SMEs. 

The referent comes from our best knowledge of the simulated phenomena.  Reference 
[21] discusses several sources of referents, including SMEs, experimental data, human 
performance data and the technical literature describing human behavior.  SMEs remain, 
by far, the most common source of referent information despite their inherent problems.  
While rich and broad, the applicable psychological and sociological literature contains 
many unresolved disparities thus forcing validators to choose one or another schools of 
thought, sometimes with little more justification than their intuition.  Recently developed 
physiological techniques could help to close those gaps but this may take several more 
years.  Until recently, human experimental data came from psychological and 
sociological studies.  Some of the data from different studies correlates but much of it 
remains disparate.  Observations of human performance in various tasks remain a 
relatively untapped resource, especially for military applications, although some have 
used these results [16, 17]. 

One can observe a simulation’s capabilities in two places, its conceptual model and its 
results.  HBR’s uniquely provide one additional point of capability visibility, its 
knowledge base.  Several authors have described their developing conceptual models for 
HBRs [9-11].  Their methods include acquiring the knowledge for their models and 
organizing that knowledge into some coherent form.  Not unlike the issues of conceptual 
modeling in conventional simulations, conceptual modeling for HBRs has not evolved 
toward either a consistent form or content although ongoing efforts may achieve that 
goal.  Further, the HBR community has not yet agreed upon a single definition of a 
conceptual model, a fact that continues to hamper effective communication within the 
community. 

In general, few developers currently build anything resembling a conceptual model for 
their HBRs.   However, most developers exercise some form of results validation.  
Considerable experience exists in this respect; only some of which has been documented 
in the accessible technical literature [16-20].  Most of the current results validation relies 
upon SME opinions [14, 18, 20] although some efforts have compared HBR results 
against the results obtained from human-in-the-loop simulators [16, 17] and against the 
predictions of psychological models [19].  Getting all three types of information 
necessary for validation with the quality needed remains a challenging task, especially for 
simulations of such complex phenomena as HBRs. 

The SISO Glossary of Fidelity-Related Terms defines fidelity as “the degree to which a 
model or simulation reproduces the state and behavior of a real world object or the 
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perception of a real world object, feature, condition, or chosen standard in a measurable 
or perceivable manner; a measure of the realism of a model or simulation; faithfulness” 
[23].  Recent concepts of simulation fidelity [24-27] create the language through which to 
describe both validation criteria and a simulation’s capabilities in easily comparable 
terms.  Understanding and describing HBR fidelity serves several purposes: 

• It identifies specific terms with which to characterize HBR requirements and 
capabilities. 

• It takes a step toward making quantitative evaluation of HBR validity possible. 

• It makes HBR validation more objective and repeatable. 

• It contributes to other aspects of HBR development and employment. 

• It creates an important database of information about HBR capabilities that could 
be used to identify applications for which it might serve appropriately (i.e., reuse). 

• It supplies the means to evaluate the consistency of the elements within the 
knowledge base and between the knowledge base and the HBR’s behavior engine. 

• It suggests ways to organize information about human behavior so as to better 
serve as referents for HBR validation. 

Several other authors have considered the issue of HBR fidelity [6, 28-30].  
Unfortunately, these views do not agree completely on the precise components of fidelity.  
Harmon and Youngblood [30] describe how to interpret fidelity for HBRs from the SISO 
Fidelity Conceptual Model [25].  Since this view is consistent with a definition that 
applies broadly to all types of simulation, regardless of purpose or form, the remaining 
discussion will use that definition.  The discussion below summarizes this description. 

Everyone knows that, unique among systems, simulations abstractly represent the 
behavior of something else for some purpose.  Abstraction means that simulations must 
omit some of the details about the things they model from their representations.  In other 
words, simulations only resemble their simulands. Therefore, 

• Modeled objects ⊂ real world objects 

• Modeled dependencies ⊂ real dependencies 

• Modeled independent properties ⊂ real independent properties 

• Modeled dependent properties ⊂ real dependent properties 

• Modeled independent property domains ⊂ real independent property domains 

• Modeled dependent property ranges ⊂ dependent property ranges 

• Modeled dependencies ≈ real coupling phenomena 

These abstractions of the real world represent the resolution or level of detail of the 
simulated world.  This and the other fidelity components [24] describe the degree that a 
simulation abstracts its simuland.  Figure 5 illustrates the result of the abstraction process 
when creating an HBR. 
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Figure 5.  All HBRs Abstraction the Characteristics of the People They Model. 

Dependency characteristics describe the amount of functional abstraction in a model.  
Figure 6 illustrates this part of the abstraction process. 

 
Figure 6.  Dependency Abstractions of Real People’s Behavior 

The notions from the fidelity description specify the following parameters for describing 
a dependency. 

• independent property sensitivity - minimum degree of independent property 
change necessary to produce a change in a dependency’s dependent property state 

• dependent property precision - minimum degree of dependent property state 
change that a dependency can manifest 

• dependent property error - degree to which a dependency’s behavior, as reflected 
in the state changes of its dependent properties, deviates from the behavior of the 
real phenomena it approximates 

While additional characteristics may exist, those proposed above provide a good starting 
point for rigorously describing simulation fidelity, the vocabulary for describing 
simulation representational capabilities. 

From this perspective of fidelity, few simple steps can help one gauge an HBR’s fidelity: 

1. Identify the representations of object properties and dependencies 

2. Characterize the domains and ranges of those dependencies 

3. Characterize dependency sensitivities to their independent properties and the 
precisions of their dependent properties 

4. Characterize the errors of the dependency output relative to the behavior of some 
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referent 

One can apply these steps to an HBR as either a black box or a white box.  When dealing 
with an HBR as a black box, one can only assess the validity of its results.  The nature of 
its design and knowledge representation obscure its correspondence with its referent 
thereby currently making validation at those intermediate levels uneconomical to 
impossible.  Ongoing efforts to automatically explain the nature of inaccessible 
knowledge representations (e.g., neural networks) may enable treating these HBR designs 
as white boxes in the future. 

White box fidelity applies to HBRs using more accessible knowledge representations 
(e.g., production rules).  Interpreting HBR fidelity when treated as a white box begins by 
assessing the fidelity of its primary components: 

• Knowledge base 

• Internal state representation 

• Behavior engine 

Evaluating the fidelity of an HBR’s knowledge base and internal state representation 
involves decomposing its knowledge representation into its representations of state 
(declarative knowledge) and behavior (procedural knowledge) then comparing those 
components against the referent [29].  The only trick in doing this involves remembering 
that the referent for the perceptions must come from the nature of the simulated world 
with which the HBR interacts and not strictly from our knowledge of relevant human 
nature.  The knowledge-based systems verification, validation, evaluation and testing 
world provides an enormous resource for assessing knowledge base validity.  A later 
section of this paper surveys this technology. 

Determining the fidelity of HBR behavior engines involves somewhat more effort.  One 
can organize HBR behavior engine dependencies into three broad function groups: 

• Knowledge base element execution (e.g., theorem proving, condition matching, 
and conflict detection and resolution) 

• Emotional effects manifestation (e.g., computing emotional state, determining 
emotion influences upon performance limits, and computing influence probability 
distributions) 

• Performance limit representation (e.g., sensor and computational bandwidth 
constraints upon the observed behavior) 

Behavior engine dependencies only include the functionality that manifests emotional 
effects and performance limitations when their HBR designs do not embed those 
representations into their knowledge bases. 

After using fidelity concepts to describe HBR capabilities and validation criteria in 
equivalent terms, assessing HBR validity only involves comparing those descriptions to 
determine if the HBR meets the validation criteria.  Letting the accreditation authority, if 
one exists, know where the deviations lie permit their determining the fitness of the HBR 
for the application or class of applications.  Figure 7 shows how the flow of information 
from several sources fuels the basic HBR validation tasks. 
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Figure 7.  HBR Validation Task Information Flow 
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• Possible problems that could be encountered in the activities and the criteria for 
recognizing them 

• Contingencies for dealing with possible problems and mitigating risks 

• Activity products and their dependencies 

• Approximate activity schedule 

• Information produced by each component 

The HBR validation plan should address each of these information needs for each of the 
components listed above. 

Despite its correspondence with general validation technology, HBR validation is quite 
an immature field.  Table 2 summarizes the state of the art in terms of its theory, tools 
and techniques, experience and experimental data. 

Table 2.  Brief Assessment of the State of the Art of HBR Validation. 
Factor Maturity 

Theory • Almost none, if any, on validation of HBRs specifically 
• Considerable psychological, sociological & physiological 

theory on how actual humans behave under various 
circumstances 

• Considerable theory on testing/observing human and 
group behavior (some of which may be useful) 

Tools & Techniques • Some tools for generating execution traces for some 
specific HBRs (e.g., Soar) 

• Some tools to display observable HBR behavior (e.g., 
PVDs) 

• Very few tools to support HBR validation 
• Many tools for KBS validation 

Experience • Some direct experience in validating particular HBRs for 
various purposes (e.g., Soar, ACT-R, HOS, MicroSaint, 
ModSAF) 

Experimental Data • Much on actual humans performing a variety of tasks 
• Much from psychological, sociological and physiological 

experiments on actual humans 

Table 3 depicts the same situation in a different way.  It summarizes the resources that 
are available for each of the activities and each of the components of the HBR. 

Table 3.  State of the HBR Validation Technology Currently Available 
Validation 

Component 
Conceptual Model Knowledge Base Observable 

Behavior 
Requirements 
Characterization 

few disparate 
methodologies 

limited formal 
languages 

SMEs 

Referent 
Description 

SMEs, 
physiological, 

psychological & 
sociological models 

SMEs, 
documentation 

SMEs, experimental 
data 
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Table 3.  State of the HBR Validation Technology Currently Available (continued). 

Validation 
Component 

Conceptual Model Knowledge Base Observable 
Behavior 

System 
Characterization 

few disparate 
methodologies & 

forms 

KB languages, NL 
explanations 

observable 
behavior, 

explanation traces, 
performance meas. 

Comparison 
Techniques 

nothing specific SMEs, KBS VV&E 
tools & techniques 

SMEs, KBS testing 
tools & techniques 

A few tools have been developed specifically to support HBR validation [12-15] and 
reported in the technical literature.  All of these aim at aiding the results validation phase 
through automation.  All of these tools apply to very specific systems and have not yet 
received wider application.  By comparison, researchers in the cognitive science 
community have developed over 80 tools to support various phases of KBS validation 
[21].  This technology base provides a much more well established resource for HBR 
validation for the immediate future. 

Several HBRs have been developed and validated for a variety of purposes [16-20, 22].  
A recent National Research Council study provides an excellent survey of HBR 
technology [22].  These study results discuss the validation of many of the existing and 
developing HBRs.  Table 4 recasts this information to summarize and compare the 
different approaches to validating HBRs discussed in Reference [22]. 

Table 4 shows that developers have applied primarily three types of referents to 
validating their HBRs: domain, psychological and physiological referents.  They 
evaluated against referents from both human expert assessments and human performance 
data for a diversity of applications.  Table 4 differentiates SME referents from 
experimental data referents in the last column as human interaction data referents and 
human behavior data referents, respectively.  They evaluated against several different 
psychological referents, as well, including validated theory, experimental data and human 
interaction (a Turing test equivalent).  Table 4 shows that integrated models of human 
behavior are most likely to be validated against psychological referents.  Only neural 
network approaches to HBR have seen widespread validation against physiological 
referents.  However, this validation has been limited to the relatively constrained 
performance of nonspecific neurons. 

All of the techniques applied to validating existing HBRs have significant limitations.  As 
mentioned, using domain referents requires unrealistic searches of very large and 
nonlinear behavior spaces.  Using psychological and physiological referents requires 
extensive validated models of psychological and physiological phenomena.  While many 
comprehensive psychological models exist, relatively few of them have been applied to 
HBR validation, especially for simulation applications.  Like the physiological models, 
many psychological models deal with very restricted behavior spaces.  These limitations 
prevent their useful application to HBRs representing behavior for realistic situations.  As 
psychological and physiological models become richer and more consistent, their utility 
for HBR validation will increase.  As with models and simulations of physical systems, 
validation must be done against referents at different abstraction levels.  Only consistent 
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results between these different levels can guarantee validity.  At this point, and probably 
forever, no single level of referent testing should be sufficient for any application. 

In general, immature technology and referent sources hamper HBR validation.  Despite 
these shortcomings, HBR validation remains paramount in HBR development and use.  
Their great complexity and nonlinear nature creates the omnipresent danger that casual 
assessment of their validity will mistakenly classify erroneous behavior as correct.  Only 
systematic validation can help to assure that the causal errors so prevalent in real human 
behavior arise from designer intent rather than from a flaw in the knowledge bases’ or 
behavior engines’ functionalities. 

Table 4.  Comparison of the Validation of Different HBRs. 
System Domain 

Referent 
Domain Types Psychological 

Referent 
Physiological 

Referent 
Referent Data 

Sources 
ACT-R X submarine TAO 

& Aegis radar 
operators 

X  human behavior data 

COGNET X anti-submarine 
warfare 

  human behavior data 

EPIC X computer 
interaction tasks 

X  human behavior data 

HOS   X  validated theory 
Micro 
SAINT 

X helicopter crew, 
ground vehicle 
crews, C2 
message, tank 
maintenance & 
harbor entry 
operations 

  human behavior data 

MIDAS X 757 flight crew   human behavior data 
Neural 
Networks 

  X X validated theory, 
human behavior data 

OMAR   X  validated theory, 
human interaction 

SAMPLE   X  validated theory 
Soar X air traffic control, 

test director, 
automobile driver, 
job shop 
scheduling 

X  validated theory, 
human interaction, 
human behavior data 

ModSAF X ground warfare   human interaction 
CCTT SAF X ground warfare   human interaction 
MCSF X small unit 

operations 
  human behavior data, 

human interaction 

SUTT CCH X small unit 
operations 

X  human behavior data, 
human interaction 

IFOR (see 
Soar) 

X fixed & rotary 
wing air 
operations 

X  validated theory, 
human interaction, 
human behavior data 
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HBR VALIDATION LESSONS LEARNED 
HBR validation experiences with military models and simulations (M&S) are replete 
with various approaches to instilling the discipline of doctrinally valid procedure among 
seemingly unruly computer generated forces.  It is a tribute to the complexity of 
modeling even simple human behaviors, that so many different approaches have been 
attempted.  In encounters with several M&Ss, from initial development through 
preparation of legacy systems for an application, there are some empirically learned 
lessons, for which if accounted in the initial planning, could improve both the efficiency 
and first-time success of valid HBR implementation of a new development and the 
efficiency and accuracy of an HBR validation of a legacy system. 

There are four overarching areas that could affect a project’s success: requirements, an 
SME-software engineer process, synthetic natural environment (SNE) and 
documentation.  Within these areas orbit a number of hard-won lessons for consideration. 

Requirements 
In general, experience in several programs has indicated that requirements definition in 
Army M&S requirements documentation does not adequately reflect the intended uses.  
Information to support modeling decisions and therefore validation activities is not easily 
derived from most user requirements documentation.  The users know they want a tool 
that simulates military activities not easily or cheaply encountered in reality, but how 
they intend to use the tool will influence its development.  The users repeatedly have 
shown they have had difficulty in enunciating the specifics of their uses.  Inadequate time 
or experience and skills at requirements development can adversely affect the user in 
developing a clear focus of exactly how an M&S with a vast array of intended 
applications across multiple Army M&S domains would be used. 

The state of the user not knowing what is required is not necessarily a static limitation 
that can be addressed by iterative interaction between developer and user.  It can tend to 
be a dynamically changing problem.  Initial user direction of the requirements can be 
changed as a result of developer analysis.   Usually these changes are catalyzed by 
newfound user clarity of what is wanted and not wanted, resulting in changes to the 
detriment of the very analysis that fostered the enlightenment.   In effect, development 
resources are being used to define user requirements.   Sometimes additional 
requirements may be added that are obvious extensions beyond the scope of the initial 
requirements documents, creating additional midcourse changes, as the user attempts to 
leverage in previously unconsidered applications.  The WARSIM program is a recent 
example of such a fluid and evolving requirements environment in an in-progress 
development when it had to consider the incorporation of JSIMS.    

There are some cases where articulating high-level and vague requirements is a systemic 
requirements writing approach to catalyze the creative faculties and expertise of 
competing bidders in an attempt to maximize the M&S functionality for the Army’s 
development dollar.  This takes advantage of the experience of those software houses 
with multiple development experiences to actually expand the possibilities of the 
development as a function of their experience from those multiple programs and avoids 
limiting the developers’ innovativeness to the Army’s detriment by providing a rigid 
structure.  In this case the Army purposely does not define a standard, requiring the 
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developer to define one for its approval.  This is the standard approach practiced by 
STRICOM and under which the WARSIM and OneSAF programs are being executed. 

Within such environments, HBR specification and validation seeks solid ground.  The 
impact of the above on HBR validation, whether done by omission or commission, is that 
required HBR effects and measures of performance that will satisfy intended M&S 
applications are specified late or not at all.  The HBR effects and measures of 
performance are often indirectly derived as a function of iterative rework and face 
validation between software engineer and SME.   At a minimum, this is expensive and 
inefficient, but it also may put application accreditation at risk because HBR effects and 
performance measures required for the intended applications are not specifically 
identified.  The HBR implementation evolves into whatever the SME and software 
developer are able to produce within the project time and schedule.  As seen below, the 
lack of specificity up front will ripple to other aspects of HBR validation. 

HBR knowledge acquisition (KA) is usually viewed as the hand-off from the military 
domain to the software implementation domain and is the tool to define and validate 
HBR representations within the M&S and for the application.  In spite of all of the 
military inter-domain success of producing and validating these documents, the 
documents often fail to provide adequate, intra-domain HBR modeling information.  The 
over-arching element missing in the production of these documents is the focus on 
providing the information necessary to model the effects and performance measures 
required by the application, and likewise to set the standards focus for effective validation 
assessment.  Without that type of focus, the documents are domain accurate, broad 
breadth essays describing military activities as opposed to technical effects and 
performance responses to questions within the context of a doctrinal military setting.  In 
other words, without M&S requirements as the pre-eminent driver, KA documents are 
developed without bounds and tend to attempt to describe reality.   Any M&S 
implementation-specific useful information found within them is merely a serendipitous 
occurrence and not one of design.  A third order effect of the lack of focus is they are 
written broadly and at too high a level, using military domain parlance from which 
software engineers must infer meaning.  The focus on implementation and application 
versus reality may appear subtle, but it is actually huge and insidious because the impact 
is discovered late, creating program risk.  The failure of these documents to provide the 
right information for the software domain becomes evident during implementation, 
causing desk-side, undocumented informational exchanges to fill the gaps of the KA 
documents. The decisions of these stopgap procedures tend not to go through a validation 
process. 

Because the required application effects are unknown, the producing and validating 
SME’s conduct their activities without regard to them.  The documents easily support 
validation by designated authorities because they were written with regard and 
doctrinally assessed relative to reality and independent of implementation.  If HBR 
effects and performance measures were more a part of the validation question, the 
validating SMEs would have been making their assessments within the context of 
implementation.  Assuming they were implementable, they would have been the 
representations that had been validated. 
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The above might be hotly contested by many in the M&S development community who 
have worked on programs such as CCTT or WARSIM because of the extensive KA 
production that was done for these programs.  In fact, dedicated teams of professional KA 
researchers produced extensively detailed, well-illustrated documents describing military 
tasks.  They brought together in a single document the essential procedures and 
considerations of a military task from multiple authoritative military sources.  They 
coordinated with software engineers, gaining insights for formatting their military 
documents in the most beneficial way, iterating the format several times to derive the best 
format, producing documents such as the Combat Instruction Set (CIS).  They had the 
content of these documents validated by other SMEs, representatives from the 
appropriate Army branch schools.  However, all of these measures are meaningless if the 
modeled implementation does not reflect their content.  The validation is meaningless or 
the implementation is invalid because the modelers were not able to achieve the content 
and intent of the HBR KA artifact.  As a result, when military decision-makers learn of 
behavioral implementation limitations relative to their understanding of the HBR KA 
documents, they conclude the process of validation or implementation has failed them. 

The lack of application effects and performance requirements makes any implementation 
subject to criticism from any SME.  One SME can declare an HBR valid and the next 
declare it invalid.  Since no HBR is a perfect representation of reality, every HBR is 
vulnerable to an invalid assessment.  This was a problem for ModSAF in preparation for 
STOW-97.  The effects and performance requirements were unknown for STOW, and the 
effects and performance requirements for the HBR implementations were unknown for 
those versions of ModSAF.  It was easy for validators to declare ModSAF HBRs invalid 
because they had no choice but to compare them to reality.   

Summary of Requirements Lessons Learned. 
• Poor HBR requirements specifications create a domino effect of barriers to 

achieving HBR validity. 

• Validation decisions cannot be defended without the effects and performance 
requirements that drove the implementation. 

• Requirements specifications usually do not provide effects and performance 
measures. 

• Some acquisition approaches purposely avoid specific requirements. 

• Lacking any other specification, HBR KA attempts to describe its domain from a 
reality perspective, using its parlance. 

• HBR KA is too general in description, creating documents requiring developers to 
infer meaning and make choices of importance. 

• Development can never achieve reality. 

• Users and decision-makers incorrectly assume validity is related to reality instead 
of application requirements. 
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SME-Software Engineer Process 
The ideal process for efficient and economic software development is validation of HBR 
conceptual models before implementation.  These are then verified as implemented 
properly.  The reality is that validation is usually not achieved until after implementation.  
Most providers of military KA are unaware of how to develop information that supports 
software implementation.  The shortfall is not merely an issue of inadequate description 
but a difference in language.  The software engineer ‘speaks’ in quantitative terms, 
mathematics tied together with logic, easily followed and explained but limited in 
expression and nuance.  The military SME uses qualitative terms, ‘English’ descriptions 
that are rich in expression and nuance further complicated by both common terms loaded 
with insider meaning and military unique terminology.  Most software engineers have no 
or limited military experience, and most military have no or limited software background.  
Without an explicit process designed for the purpose, it is almost impossible for one to 
write for the other and transfer the critical information necessary to model.  The shortfall 
is usually resolved when implementation begins, during which software engineers, in 
trying to develop software requirements specifications, scramble to execute a variety of 
informal and undocumented information gathering efforts with SMEs or, when time 
constrained, make their own best interpretation of the KA artifacts.  Then validation 
occurs concurrent with implementation or after it is completed.  

For this well-known M&S development problem, several different approaches have been 
attempted by different programs to preclude it.  The CCTT program introduced the CIS, 
WARSIM evolved into the ODO, and OneSAF developed the BKAD.  These and similar 
HBR document templates attempted to identify critical information categories that 
military SMEs would attempt to populate.  These documents fell short in two areas. The 
SMEs continued to use their language and the documents did not drive the KA SME to 
the level of specificity that is required for implementation. 

More an art than science, the task is difficult.  The OneSAF program chose to eschew its 
own format attempt, the BKAD, and adopted a software engineering approach to 
developing KA products.  It initiated a program to train its KA SMEs to decompose 
military tasks into basic generic processes.  Once described, the KA SMEs 
conceptualized and defined quantitative expressions of these processes.  The OneSAF 
program then put the responsibility on its corps of validation SMEs to validate the 
processes and their quantitative representations relative to OneSAF requirements.  It was 
not enough to say something was invalid from a doctrinal perspective.  Defects against 
these processes had to be justified relative to OneSAF requirements documentation.  The 
OneSAF user representatives would then adjudicate defects.  This process is similar to 
that developed for the JWARS program.  

The OneSAF KA approach takes the onus off of the software engineers to interpret KA 
documentation by providing them with implementable specifications.  It also facilitates 
validation.  What is validated is what is going to be modeled.  If the KA represents the 
needs of the OneSAF program, when validated, the validation will be with respect to the 
program needs.  However, the OneSAF program has not specified the HBR required 
effects and performance measures, so it remains to be seen if the KA effort is producing 
representations adequate for the known application goals of the program.   
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Summary of KA-Software Engineer Process Lessons Learned 
• Regardless of the quantity of information produced by military KA SMEs, the 

descriptions tend not to support the requirements of software development.  In 
fact, the larger the quantity of information, the more difficult it is for a software 
engineer to infer the essential elements that need to be implemented. 

• Validation of such KA documents has little relationship to M&S HBR validation, 
for the software engineers will analyze them and develop a document that suits 
implementation.  If this approach was the only means to transform military 
domain information into software domain information, the software engineer’s 
document is what should be validated.  It represents what will be modeled. 

• The more that KA documentation development processes are improved to support 
implementation, the greater the value of the HBR validation activities of those 
documents. 

Association of HBR with the SNE 
Even if all of the problems described above are resolved, a perfectly defined HBR task, 
validated against application requirements, and implemented properly may not perform 
validly if the synthetic natural environment does not support the modeling 
implementation. 

ModSAF has an excellent occupation of battle position implementation that finds primary 
and alternate positions with cover and concealment, and hide positions.  When a user 
selected battle position fails to provide adequate terrain to meet positioning requirements, 
the implementation distributes the members of the unit equally over the designated area 
equidistant from one another.  What was discovered is that the implementation opted for 
the default 97% of the time.  After examination it was determined that the terrain 
database did not support the implementation.  The implementation was rarely exercised.  

The OneSAF program plans to have multiple terrain resolutions.  It rapidly became 
apparent that one implementation of a behavior that successfully operated on one 
resolution of terrain may not be adequate for another terrain resolution.  OneSAF faces 
the likelihood of having to have more than one version of the same behavior.  For 
example, KA was producing detailed descriptions of formation position keeping.  The 
process was depending on intervisibility checks between entities; failure to maintain 
intervisibility would cause the entities to reduce their spacing until intervisibility was 
achieved. It was pointed out that if this methodology was played on large terrain cells 
with constant vegetation higher than entity sensors and that thereby denied intervisibility, 
it was conceivable that all of member entities of the unit would continue closing in on 
another until they were literally located on top of each other. 

Summary of association of HBR representations with the SNE 
• Evaluate the SNE against the HBR requirements. 

• Many of the anomalies with regard to the interaction of HBR and SNE cannot be 
anticipated.   

• Adequate results testing against SNE should be planned. 
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Documentation 
Well-documented HBR KA documentation is a critical component to future M&S 
application assessments.  Without it tremendous time can be taken in backwards 
engineering or great risk taken in not adequately evaluating HBR functionality.  For 
example, in the early versions of ModSAF, there was almost no documentation.  In 
assessing HBR for STOW-97, there was no way to evaluate behavior performance except 
by face validation.  Multiple test designs had to be exercised to establish the limitations 
and capabilities implied by the instantiated HBRs.  Anomalies were found that could not 
be explained.  The only basis for comparison was relative to reality because the effects 
and performance measures for which they were designed were unavailable. 

It is a fact that integration of different representations will affect modeling decisions, for 
example, the terrain limitations driving possible changes in the KA of formation position 
keeping discussed above.  When the KA documentation is discovered not to serve 
implementation, the software engineers will find some means to find the information they 
need to complete the implementation.  This is usually done informally and quickly 
because development schedules usually do not provide for KA rework resources.  
Because the program must take the necessary measures to be a success, the historical 
trace of the HBR development is lost.  Documentation is not updated to reflect what was 
actually done.  The documentation itself is no longer valid.  This impacts the usefulness 
of that documentation for future verification and validation (V&V) and accreditation 
activities.  It can cause the user of that documentation to make misguided decisions. 

The OneSAF program is posed to capture changes to its HBR KA by instituting an overt 
process for capturing the changes in the KA documentation.  It is anticipated that the KA 
documents will serve the implementation effort, but there will be implicit, explicit, 
integration and performance modeling issues that may drive changes to the way the KA is 
implemented.  The process is set up to capture these changes and maintain documentation 
faithfulness to the implementation.   

Summary of documentation lessons learned 
• Perfectly formulated HBR KA documents will not always be followed due to 

implementation considerations. 

• There usually is not, and there must be, a means to capture in-process decisions 
that depart from the previously validated HBR KA documentation. 

• Documentation is critical and must be valid for future validation and accreditation 
assessments. 

KBS VERIFICATION & VALIDATION TECHNOLOGY 
It is true that different communities within the computer software field define validation 
and verification in somewhat different ways.  The traditional knowledge-based systems 
community is no different.  Even within this community, there has been significant 
confusion about the meaning of these terms [31].  We will adopt here their definitions for 
validation and verification of traditional knowledge-based (expert) systems. 
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KBS Verification 
Gonzalez and Barr [31] define verification of traditional knowledge-based systems as the 
process of ensuring that the intelligent system 1) conforms to specifications, and 2) has a  
knowledge base that is consistent and complete within itself.  One major advantage of 
verifying the internal consistency and completeness of the knowledge base is that it can 
be done without exercising the system, a process that lends itself to automation.  
Numerous approaches have been developed for automated verification of intelligent 
systems, particularly in the area of rule-based systems.  In general, these approaches 
focus on determining consistency and completeness and identifying anomalies within the 
intelligent system.  This section discusses the background of and the early efforts in 
verification of rule-based knowledge-based systems.  We focus on rule-based systems 
because of their popularity and success.  Furthermore, we will focus on the efforts made 
at automating the verification and (to a slightly lesser extent) validation processes. 

Suwa et al [32] are credited with one of the earliest works in automated verification.  
Their contribution in automated verification systems was the static rule checking utility 
developed as part of the ONCOCIN system.  ONCOCIN's verification capabilities are 
divided into checking for inconsistencies (defined as conflict, redundancy, and 
subsumption) and incompleteness (defined as missing rules).  An automated rule checker 
is used which displays potential errors.  An expert is then asked to determine which of 
these potential errors are in fact actual errors. A weakness of this approach is its 
limitation to identifying problems at the rule level (i.e., it cannot identify problems that 
are the result of longer reasoning chains, such as redundancies resulting from several 
inference steps).  Furthermore, the system’s computational complexity is rather poor, 
making this approach only useful for a small set of parameters [33].   

Another well-known example of automated verification via static analysis of rule-based 
systems came only a few years later. Nguyen et al [34, 35] developed CHECK to verify 
the consistency and completeness of knowledge-based systems built using the Lockheed 
Expert Systems development environment (LES).  While the algorithms used in CHECK 
could theoretically be applied to rule-bases developed in other environments, the CHECK 
program itself could not be.  Operation of CHECK is based on the construction of a 
dependency chart, which shows the dependencies among rules and between rules and 
classes.  CHECK identifies the following rule-base errors (or, more accurately, potential 
errors): conflict, redundancy, subsumption, unnecessary IF conditions, circular rule 
chains (consistency checks) and un-referenced attribute values, illegal attribute values, 
unreachable conclusions, dead-end goals, and dead-end IF conditions (completeness 
checks).  The complexity of CHECK appears to be better than that of the ONCOCIN 
verification system, but the tool is not suitable for general use since it depends on the 
rules being set up in a particular fashion. 

In 1987 Cragun and Steudel [36] developed a system called the Expert Systems Checker 
(ESC).  ESC makes use of decision-tables to check the completeness and consistency of a 
knowledge base.  ESC looked for discrepancies, ambiguities (including conflict), 
redundancies, and missing rules.  Conflicts and redundancies were determined in 
quadratic time, followed by a completeness check.  If there were no conflicts or 
redundancies, then the completeness check would be carried out in linear time.  However, 
if conflicts or redundancies were found then the completeness check required exponential 
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time. 

KB-Reducer [37, 38] was designed to reduce knowledge bases to more concise contents 
without sacrificing correctness or functionality.  However, it could also be used as a 
verification tool to check rule bases for inconsistency and redundancy, including 
contradictions and redundancies that are the result of inference chains, not just pairs of 
rules.  An extension to KB-Reducer called KBR3 [39] was designed to assist in the 
maintenance of large knowledge bases.  KBR3 is based on an ‘application-neutral’ 
language into which the knowledge base must be translated before it can be processed.   

COVER (COmpleteness VERifier) [33; 40; 41] was the next tool in the horizon for 
verification of rule-based systems.  COVER carries out seven verification checks: 
redundancy, conflict, subsumption, unsatisfiable conditions (rules which cannot be fired, 
missing values), dead-end rules, circularity and missing rules.  The rules must either be 
written in or converted to a language based on first-order logic, and COVER must be 
given the set of final hypotheses (classes), as well as information about any semantic 
constraints.   

Zhang and Nguyen [42] used a Pr/T net representation to do static analysis of a rule base.  
However, this work does not take certainty factors into account, and it also does not 
handle negated information in the rule-base. 

Valiente [43] presents a method for redundancy and subsumption detection based on a 
hypergraph representation of the rule-base.  His premise is that hypergraphs provide a 
more compact representation for rule-bases than do graphs, and they also facilitate use of 
graph transformations based on graph grammars and algebraic graph transformation.  His 
method is restricted to antecedents with conjunctions, and any disjunctions in a rule must 
be rewritten using multiple rules. 

The above systems all have one thing in common – they look for inconsistencies and 
incompleteness in a rule base without exercising the rule base.  While other such systems 
exist, the above are the main ones described in the technical literature since the concept 
was originally conceived in 1982.  Now let us take a look at efforts to automate the other 
aspect of verification - ensuring satisfaction of specifications.  

VSE and VSE-II [44] are general-purpose verification systems that show promise for a 
range of software systems, including intelligent systems.  VSE can be viewed as a CASE 
tool that supports software development from the earliest stages through code generation.  
System developers use formal representations of system properties and system 
requirements to aid the development process, and VSE is invoked to prove that specified 
requirements hold on the knowledge represented in the system.  The core of VSE is an 
interactive inductive theorem prover, which uses full first-order predicate logic based on 
abstract data types and syntactic components that represent temporal constraints.  VSE 
has been used for development of systems that handle robot control within a nuclear 
power plant, control software for a North Sea storm surge barrier, and smartcard 
operation software.  Current work on VSE-II will tailor it towards the special needs of 
particular application domains, such as e-commerce systems. 

Other rule checkers exist that generally perform the same function of formally proving 
that specified requirements hold. 
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KBS Validation 
Once again citing Gonzalez and Barr [31], they define validation as the process of 
ensuring that the output of the intelligent system is equivalent to that of human experts 
when given the same input.  This typically requires that the knowledge-based system be 
exercised with test data.  The challenges here are how to select the test data (test cases) 
such that they in fact “cover” the entire system without being exhaustive and how to 
determine the correctness of the solution presented by the knowledge-based system for 
the test inputs.  The latter frequently requires human expertise (an “Oracle”) to serve as 
the judge of the correctness of the system’s response.  For these reasons, KBS validation 
has not lent itself to automation as well as has verification. 

In order to determine whether or not the output of an intelligent system is equivalent to 
that of a human expert, we must interrogate the intelligent system with test data.  
Therefore, all validation systems are characterized by some mechanism that facilitates 
review of system results on test data.  Perhaps the earliest dynamic analysis method for 
validation of an intelligent system was TEIRESIAS [45], developed for use with the 
MYCIN system.  TEIRESIAS allows the rule-base developer to find in the rule-base the 
errors that led to incorrect conclusions.  TEIRESIAS is both a debugging tool and a 
knowledge acquisition tool, allowing the alteration, deletion or addition of rules in order 
to fix an error.  TEIRESIAS shows the user the reasoning used by the system to reach a 
conclusion, and the user can then approve of the rules used or make corrections if an 
error is determined to exist.  TEIRESIAS, however, makes no effort to develop test cases 
automatically, or facilitate for Oracle review.  It assumes that the developer will serve as 
the Oracle - a sensible approach for debugging, but a questionable practice for validation. 

The development of TEIRESIAS was followed by EMYCIN [46], which fixes spelling 
errors, checks that rules are semantically and syntactically correct, and points out 
interactions among rules that could lead to errors.  EMYCIN uses a trace of the system's 
reasoning process, an interactive mechanism for reviewing and correcting the system's 
conclusions (like TEIRESIAS), and a facility that compares the system's results with 
stored correct results for the test cases. 

There are also a number of dynamic analysis tools that carry out (or assist) knowledge 
base refinement.  Among these are SEEK [47] and SEEK2 [38, 48].  We categorize these 
as validation systems, since rule refinements are carried out in order to enable a modified 
knowledge-based system to produce improved performance, i.e., closer to that of the 
Oracle.  SEEK is an interactive rule refinement system that uses stored cases to provide 
guidance for rule modifications.  It makes suggestions of possible rule generalizations 
and specializations.  As each test case is run, SEEK comparesan Oracle’s conclusion for 
that case with the system's conclusion, creating a performance summary.  Once the 
performance summary is complete the developer can refine the rules, weakening or 
strengthening rules with the guidance of heuristics built into SEEK.  SEEK2 improves on 
SEEK by automating many of the knowledge base refinement tasks.  For example, 
SEEK2 automatically decides for which conclusions rules should be evaluated.  It also 
decides which rule refinements to try, and which of those to keep in the final knowledge 
base, as indicated by improvements when the refined knowledge base is used to evaluate 
the test cases. 
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Path Hunter and Path Tracer [49, 50] are based on the idea that functional validation may 
show that the system performs well on the test cases, but there may still be problems in 
portions of the rule base that were never exercised during testing.  The goal of Path 
Hunter/Path Tracer is the selection of a set of test cases that exercise the structural 
components of the rule-base as exhaustively as possible.  This involves firing all rules, 
and also firing every ‘causal sequence’ of rules.  The model used to identify all possible 
dynamic causal rule-firing sequences is the rule execution path. 
A weakness of many validation approaches is that, because they focus on a set of test 
cases with known results, they only assess the system’s behavior for those known cases.  
However, this can lead to misleading prediction of the system’s behavior in actual use, 
and may not identify errors in the system because of lack of coverage by the test set.  The 
program Testing with Rule-Base Coverage (TRUBAC) [51-53] is a tool for both 
verification and validation, based on the idea that functional testing alone is inadequate 
for demonstrating equivalent output, and that structural testing of an intelligent system (in 
this case, a rule-based system) must also be used. An extension of TRUBAC [54] 
presents an approach for predicting a system’s behavior in actual use.  It accomplishes 
this by combining the coverage information provided by TRUBAC with information 
about the performance of the system on test data, meta-knowledge about the kinds of 
cases the system should handle and how realistic they are, and information about how 
representative of the intended population the test set is.  TRUBAC facilitates both 
verification and validation of the KBS, and it improves the predictions we can make 
about future performance of the system.  It is able to accomplish this because TRUBAC 
incorporates structural analysis into the validation process, whereas the majority of 
formal expert systems evaluation methods focus on verification only, or on a strictly 
functional approach to validation. 

The concept of combining verification, validation and refinement in the same tool 
became popular in the early 1990’s.  The Validation, Verification and Refinement (VVR) 
system [55] performs all three functions.  VVR generates a set of test cases and assists 
the developer in refining rules in light of the test case results.  It makes suggestions on 
how to refine rules found to be guilty. 

Lastly, Knauf et al. [56] propose a complete methodology for the validation of rule-based 
intelligent systems.  This methodology is composed of the following steps: 

1. Test case generation – Like TRUBAC, their methodology attempts to generate 
a minimal set of test cases that provides sufficient coverage to meet the pre-
defined validation criteria.  It uses a combination of structural testing with 
combinations of inputs to generate the original test case set (called the Quasi-
exhaustive set of test cases, or QuEST).  Then it reasons about the input 
values as well as several validation criteria to cull the test case set to the 
smallest size possible for the requirements.  This last set is called the 
Reasonable set of test cases (ReST) 

2. Test case experimentation – The intelligent system being validated is 
interrogated via the set of test cases, and its response is recorded.  The same 
test cases are given to a panel of experts (size and makeup not addressed) who 
likewise provide a set of responses to the test cases. 
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3. Test case evaluation – This phase involves a Turing-Test-like process through 
which the test case responses from the experts as well as the system are 
evaluated by the same panel of experts interrogated previously.  The 
methodology provides several formulae that can be used to identify the 
erroneous rule.  The formulae take into account a judgment of the competency 
of each expert based on his/her responses. 

4. Validity Assessment – This step of the process computes an assessment of the 
final overall validity of the system as presented.  This validity is de-composed 
into output validity, rule validity, and test case validity.  The rule validity is 
helpful in the next step. 

5. System refinement – This step aims to improve the system, and makes use of 
the rule and test case validity to suggest how to improve the rule(s) found 
erroneous. 

With the potential of this resource in mind, the current literature about the verification 
and validation of KBSs was surveyed to assess the state of the art and to determine its 
applicability to HBR validation.  Several survey articles [57-64] and books [65-67] 
contain overviews of this important technology area. 

CONCLUSIONS 
The immaturity of HBR validation only widens the possibilities for its advancement.  
Many people have shown committed interests in HBR development and use.  These 
interests, particularly from the user community, will drive the research, development and 
application necessary to advance HBR validation technology.  Even funding agencies 
have begun to show interest in supporting HBR validation activities.  All of the 
conditions appear right for an explosive growth in this important aspect of simulation 
validation. 
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